

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

ENVIRONMENTAL SCIENCE CENTER 701 MAPES ROAD FORT MEADE, MD 20755-5350

DATE

August 4, 2003

SUBJECT:

Region III Data QA Review

FROM

Fredrick Foreman

Region III ESAT RPO (3ES20)

TO'

Lorie Baker

Regional Project Manager (3HS34)

Attached is the inorganic data validation report for the Elkton Farm site (Case #: 31736, SDG#: MC01K1) completed by the Region III Environmental Services Assistance Team (ESAT) contractor under the direction of Region III ESD.

If you have any questions regarding this review, please call me at (410) 305-2629.

Attachments

cc: Chris Hartman (MDE)

TO File #: 0011 TDF#: 071

ANALYTICAL SERVICES AND QUALITY ASSURANCE BRANCH

Lockheed Martin Environmental Services US EPA Environmental Science Center 701 Mapes Road Ft. Meade, MD 20755-5350 Telephone 410-305-3037 Facsimile 410-305-3597

DATE:

July 31, 2003

SUBJECT:

Inorganic Data Validation (IM2 Level)

Case: 31736 SDG: MC01K1 Site: Elkton Farms

FROM:

Jeffrey Emanuel Jae

Inorganic Data Reviewer

Mahboobeh Mecanic M. M Senior Oversight Chemist

TO:

Fredrick Foreman

ESAT Region 3 Project Officer

OVERVIEW

Case 31736, Sample Delivery Group (SDG) MC01K1, from the Elkton Farms site consisted of nine (9) filtered and nine (9) unfiltered aqueous samples analyzed for dissolved metals and total metals/cyanide (CN), respectively, by Chemtech Consulting Group (CHEM). The sample set included two (2) field blanks and two (2) field duplicate pairs. The samples were analyzed according to Contract Laboratory Program (CLP) Statement of Work (SOW) ILM05.2 through the Routine Analytical Services (RAS) program.

SUMMARY

All samples were successfully analyzed for all Target Analyte List (TAL) parameters.

Data in this Case have been impacted by outliers reported in laboratory blanks, matrix spike, laboratory duplicate, and ICP serial dilution analyses. Details for these outliers are discussed under "Minor Problems, specific samples affected are outlined in "Table 1A" and qualified analytical results for all samples are summarized on a single Data Summary Form (DSF).

MINOR PROBLEMS

- Continuing Calibration (CCB) and/or Preparation (PBs) Blanks had reported results greater than Method Detection Limits (MDLs) for aluminum (Al), arsenic (As), barium (Ba), beryllium (Be), calcium (Ca), lead (Pb), magnesium (Mg), and mercury (Hg) while the field blank (FB) had reported results greater then IDL for Al, chromium (Cr), iron (Fe), nickel (Ni) and zinc (Zn). Reported results for these analytes in affected samples which are less than five times (<5X) blank concentrations may be biased high and have been qualified "B" on the DSF.
- Continuing Calibration and/or Preparation Blanks had negative results with absolute values greater than MDL for Hg, potassium (K), and silver (Ag). Quantitation limits for these analytes in affected samples may be biased low and have been qualified "UL" on the DSFs.
- The matrix spike recovery was outside the upper control limits (>125%) for Al. Reported results for this analyte may be biased high and have been qualified "K", unless superceded by "B", on the DSFs.

- The matrix spike recovery was low for silver (Ag). Low recoveries may indicate matrix interferences which suppressed the detection of this analyte and/or analyte loss during digestion process. Reported results and quantitation limits for this analyte may be biased low and have been qualified "L" and "UL", respectively, on DSFs unless superseded by "J".
- The laboratory duplicate analysis reported the relative percent difference (RPD) outside the control limit (±CRQL, 20% RPD) for zinc (Zn). Reported results regarding this analyte are estimated and have been qualified "J" on DSFs.
- Percent Difference (%D) for the ICP serial dilution analysis was outside control limits (>10%) for K. Reported results regarding this analyte are estimated and have been qualified "J" on DSFs.
- Positive results detected between the MDL and CRQL were qualified "J" on the DSFs unless superseded by "B". The results qualified for this reason were included on the Table 1 only when the "J" superseded a lower qualifier.

NOTES

The concentration values were not rounded correctly for several analytes on the Form Is for samples MC01K6, MC01K8, MC01K9, MC01L1, MC01L4, MC01L7, and MC01L8. The concentrations have been changed, initialed and dated by the validator on the applicable Form Is.

Reported results for field duplicate pairs MC01K5/MC01K8 and MC01L5/MC01L8 were all comparable and within 20% RPD, ±CRQL.

Data for case 31736, SDG MC01K1, were reviewed in accordance with National Functional Guidelines for Evaluating Inorganic Analyses with Modification for use within Region III.

ATTACHMENTS

INFORMATION REGARDING REPORT CONTENT

Table 1A is a summary of qualifiers applied to the laboratory- generated results during data validation.

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORMS AFTER DATA VALIDATION

TABLE 1B CODES USED IN COMMENTS COLUMN OF TABLE 1A

APPENDIX A GLOSSARY OF DATA QUALIFIER CODES

APPENDIX B DATA SUMMARY FORMS

APPENDIX C CHAIN OF CUSTODY (COC) RECORDS

APPENDIX D LABORATORY CASE NARRATIVES

DCN: Nar 31736.wpd

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 31736, SDG MC01K1

<u>ANALYTE</u>	SAMPLES <u>AFFECTED</u>	POSITIVE <u>VALUES</u>	NON- DETECTED <u>VALUES</u>	<u>BIAS</u>	COMMENTS*
Al	MC01L9	В		High	CCB (69.3J μg/L) MS (147%)
	MC01L1, MC01L2, MC01L3, MC01L4, MC01L5, MC01L6,	B		High	FB (207 μg/L) MSH (147%)
· ·	MC01L7, MC01L8 MC01K1, MC01K2,	K		High	MSH (147%)
	MC01K3, MC01K4, MC01K5, MC01K6, MC01K7, MC01K8 MC01L9				
	MC01K9	В		High	CCB (69.3J µg/L)
As	MC01K1, MC01K2, MC01K4	В		High	CCB (2.8J µg/L)
Ba	MC01L9	В		High	PB (2.09 μg/L)
Be	MC01K3, MC01K5, MC01K7, MC01K8,	В		High	CCB (0.5J µg/L)
a ta	MC01L6, MC01L7	В		High	CCB (0.1J µg/L)
Ca	MC01K9	B .		High	CCB (19.5 µg/L)
	MC01L9	В		High	CCB (27.5J µg/L)
Cr	MC01L2, MC01L4, MC01L6	В		High	FB (3.0J µg/L)
Cu	MC01K9		UL	Low	CBN (-0.8J μg/L)

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 31736, SDG MC01K1

	SAMPLES	POSITIVE	NON- DETECTED	· ·	
ANALYTE	AFFECTED	<u>VALUES</u>	<u>VALUES</u>	<u>BIAS</u>	COMMENTS*
Fe	MC01L1, MC01L2 MC01L3	В		High	FB (129 μg/L)
Pb	MC01K6, MC01L4	B		High	CCB (2.6J µg/L)
Mg	MC01K9	· B	•	High	CCB (23.7J µg/L)
Hg	MC01K1, MC01K2, MC01K4, MC01K5	В		High	CCB (0.1J µg/L)
. A	MC01K6, MC01K7, MC01K8, MC01K9 MC01L1, MC01L2		UL	Low	CBN (-0.1J μg/L)
·	MC01L3, MC01L4, MC01L5, MC01L6, MC01L7, MC01L8 MC01L9		UL	Low	CBN (-0.046J μg/L)
Ni	MC01L1, MC01L2, MC01L3, MC01L4, MC01L5, MC01L6, MC01L7, MC01L8	В		High	FB (4.4J μg/L)
K	All sample except MC01K9, MC01L9	J			ISD (50%)
. ~	MC01K9		UL		CBN (-130.5J μg/L)
	MC01L9		UL		CBN (-151.7J μg/L)

TABLE 1A SUMMARY OF QUALIFIERS ON DATA SUMMARY FORM AFTER DATA VALIDATION

Case 31736, SDG MC01K1

ANALYTE	SAMPLES AFFECTED	POSITIVE VALUES	NON- DETECTED <u>VALUES</u>	BIAS	COMMENTS*
Ag	MC01K1, MC01K2,		UL		MSL (52%)
· · · · · · · · · · · · · · · · · · ·	MC01K3, MC01K4,		* •		·
	MC01K5, MC01K6,	A			
**	MC01K7, MC01K9,				•
	MC01L1, MC01L3				
:				•	
	MC01L4, MC01L5,		UL		CBN (-0.5J μ g/L)
	MC01L6, MC01L7,		at .		MSL (52%)
	MC01L8, MC01L9		1	*	•
	MC01L2	j			>MDL <crql MSL (52%)</crql
Zn	MC01K1, MC01K2, MC01K3, MC01K4, MC01K5, MC01K6,	В		High	FB (84.1 μg/L) DUP (71%)
	MC01K7, MC01K8				
	MC01L1, MC01L2,	В		High	FB (183 μg/L)
* .	MC01L3, MC01L4,	• .	•		DUP (71%)
	MC01L5, MC01L6,	,			
	MC01L7, MC01L8	•			
	MC01K9, MC01L9	J		4.	DUP (71%)

^{*} See explanation of comments in Table 1B

TABLE 1B CODES USED IN COMMENTS COLUMN

CCB	=	Continuing calibration blanks had results >MDL (the results are in parenthesis). Reported results which are <5X the blank concentration may be biased high.
MSH	=	Matrix spike recoveries were high, >125% (%R are in parenthesis). Reported results may be biased high.
PB	=	Preparation blanks had results $>$ MDLs (results are in parenthesis). Reported results which are $<$ 5X the blank concentration may be biased high.
FB	= .	Field blanks had results > MDLs (results are in parenthesis). Reported results which are <5X the blank concentration may be biased high.
CBN	=	Continuing Calibration Blanks had negative results with absolute values greater then MDLs (the results are in parenthesis). Reported results <2X absolute value of the blank concentration and quantitation limits may be biased low.
MSL	=	The matrix spike recovery was low, <75% (%R is in parenthesis). Reported results and quantitation limits may be biased low.
ISD	=	Percent Difference (%D) for ICP serial dilution analysis was outside of control limits (%D >10% is in parenthesis). Reported results are estimated.
>MDI <crq< td=""><td></td><td>Reported results were greater than Method Detection Limit but less than Contract Required Quantitation Limit.</td></crq<>		Reported results were greater than Method Detection Limit but less than Contract Required Quantitation Limit.
DUP	=	The relative percent difference (RPD) for the laboratory duplicate analysis was outside of control limits, 20% RPD (RPD is in parenthesis). Reported results are estimated.

Appendix A

Glossary of Data Qualifier Codes

GLOSSARY OF DATA QUALIFIER CODES

CODES RELATED TO IDENTIFICATION

(confidence concerning presence or absence of analytes):

U = Not detected. The associated number indicates approximate sample concentration necessary to be detected.

(NO CODE) = Confirmed identification.

- B = Not detected substantially above the level reported in laboratory or field blanks.
- R = Unreliable result. Analyte may or may not be present in the sample. Supporting data necessary to confirm result.

CODES RELATED TO QUANTITATION

(can be used for both positive results and sample quantitation limits):

- J = Analyte Present. Reported value may not be accurate or precise.
- K = Analyte present. Reported value may be biased high. Actual value is expected to be lower.
- L = Analyte present. Reported value may be biased low. Actual value is expected to be higher.
- [] = Analyte present. As values approach the IDL the quantitation may not be accurate.
- UJ = Not detected, quantitation limit may be inaccurate or imprecise.
- UL = Not detected, quantitation limit is probably higher.

OTHER CODES

Q = No analytical result.

Appendix B

Data Summary Forms

Case #: 31736

SDG: MC01K1

Number of Soil Samples: 0 Number of Water Samples: 18

Site: Lab.: **ELKTON FARMS** CHEM

TOTAL METALS

Sample Number : MC01K1 MC01K2 MC01K3 MC01K4 MC01K5 Sampling Location : GWT1 GWT2 GWT3 MW1 MW2 Field QC Water Water Water Water Water Water Water Water Water Ug/L Ug	(8)
Field QC Water	(8)
Matrix : Water Ug/L <	(8)
Units: ug/L	
Date Sampled : 05/21/2003 05/21/20	
Time Sampled: 09:30 10:00 10:30 08:50 09:40 Dilution Factor: 1.0 1.0 1.0 1.0 1.0 ANALYTE CRQL Result Flag Result Flag Result Flag Result Flag Result Flag Result ALUMINUM 200 14900 K 43900 K 1550 K 31500 K 3920 ANTIMONY 60 8 8 8.6 B BARIUM 200 417 751 90.3 J 609 188 BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73 *CADMIUM	
Dilution Factor : 1.0 1.	
ANALYTE CRQL Result Flag Result Flag Result Flag Result Flag Result Flag Result ALUMINUM 200 14900 K 43900 K 1550 K 31500 K 3920 ANTIMONY 60	
ALUMINUM 200 14900 K 43900 K 1550 K 31500 K 3920 ANTIMONY *ARSENIC 15 7.7 B 9.6 B BARIUM 200 417 751 90.3 J 609 188 BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73 *CADMIUM	
ANTIMONY *ARSENIC 15 7.7 B 9.6 BARIUM 200 417 751 90.3 J 609 188 BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73	Flag
*ARSENIC 15 7.7 B 9.6 B 8.6 B 8.8 B 188 B	K
BARIUM 200 417 751 90.3 J 609 188 BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73 *CADMIUM	
BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73 CADMIUM 5	
BERYLLIUM 5 7.7 12.4 1.1 B 14.3 0.73 *CADMIUM 5	J
*CADMIUM	В
21800 31800 41600 31800	
CALCIUM 5000 32300 38900 16000 41600 31800	
*CHROMIUM 134 10 49.4 10.6 134 134 1 10.6 10.6	
COBALT 50 25.2 J 42.3 J 6.6 J 54.9 6.5	J
COPPER 25 49.6 41.7 15.7 J 27.3 26.3	
IRON 100 32900 72900 4800 73200 10000	
*LEAD 10 11.6 26.0 28.5 11.7	
MAGNESIUM 5000 23100 73300 11500 28600 19800	
MANGANESE 15 448 1310 113 1250 349	
MERCURY 0.2 0.12 B 0.06 B 0.13 B 0.11	В
*NICKEL 40 36.1 J 64.4 8.4 J 57.0 7.9	J
POTASSIUM 5000 2920 J 24400 J 1360 J 7630 J 4590	J
SELENIUM 35	
SILVER 10 UL UL UL UL UL	UL
SODIUM 5000 4990 J 4290 J 3030 J 29100 5210	
THALLIUM 25	
VANADIUM 50 78.6 192 7.8 J 113 8.9	j
ZINC 60 205 B 287 B 120 B 387 B 104	
*CYANIDE 10 10 10 10 10 10 10 10 10 10 10 10 10	В

CRQL = Contract Required Quantitation Limit

To calculate sample quantitation limits: (CRQL * Dilution Factor)

SEE NARRATIVE FOR CODE DEFINITIONS

DATA SUMMARY FORM: INORGANIC

Case #: 31736

SDG: MC01K1

Site:

ELKTON FARMS

Lab.:

CHEM

Sample Number :	1	MC01K6		MC01K7		MC01K8		MC01K9		MC01L1	
Sampling Location :		MW3		MW4		MW5		MW6		DMGWT1	
Field QC						DUP (MC01	IK5)	FIELD BLA	NK		
						· .				FILTRATE'	
Matrix:		Water		Water		Water		Water		Water	
Units:		ug/L		ug/L		ug/L		ug/L		ug/L .	
Date Sampled :		05/21/2003		05/21/2003		05/21/2003		05/21/2003		05/21/2003	
Time Sampled :		11:00		11:15		09:40		11:45	. ,	09:30	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE '	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	2440	, K	5040	ˈK	4870	κ	39.0	В	32.4	В
ANTIMONY	60										
*ARSENIC	15	6.0	J.	. ,; .							
BARIUM	200	120	J	122	* - J -	205		,		100	J
BERYLLIUM	5	1.7	J	1.7	В	0.82	В	,	Ι.		
*CADMIUM	5		,	1	*		ļ	`	*		
CALCIUM	5000	15800		16600		32700		47.3	В	14200	
*CHROMIUM	10	7.2	J	18.6		12.8		0.80	J.		
COBALT	50	14.9	J	20.1	J	7.7	J			1.8	J
COPPER	25	20.9	J	36.9		29.5	.		UL	1.4	Ĵ
IRON	100	7030	l	21000		12200		31.7	J	47.9	В
*LEAD	10	4.9	В			11.0		,			
MAGNESIUM	5000	8480		12500		20500	•	84.0	В	9800	
MANGANESE	, 15.	343	,	487		406		ľ	i	85.2	
MERCURY	0.2		UL	B su	UL	× .	UL		UL		UL
*NICKEL	40	25.5	j J	60.9		9.0	J	'	¢	6.8	В
POTASSIUM	5000	1540	J	641	J	5090	J		UL	1280	J
SELENIUM	35			in the Say	:			l.			<u> </u>
SILVER	10		UL		UL		UL	ľ	UL`	_	UL
SODIUM	5000	7340		10100 🐇		5390				4380	J
THALLIUM	25	0.2.2. 2		a situace t	, , ;			,			
VANADIUM	50	11.8	J	27.5	J	11.2	j		1		
ZINC	60	61.5	В	99.6	В	142	В	84.1	J "	114	В
CYANIDE	10		$a \times s$	1 4 4 6 6 6 6 6 6 6 6			<u> </u>	and the			Q.

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

Case #: 31736

SDG: MC01K1 ELKTON FARMS

Site:

CHEM

DISSOLVED MÉTALS

				DISSOLVED) IVIE 1 /	ILO					
Sample Number :		MC01L2	,	MC01L3		MC01L4		MC01L5		MC01L6	
Sampling Location :		DMGWT2		DMGWT3		DMMW1		DMMW2		DMMW3	
Field QC					•			DUP (MC0	1L8)		
Matrix:		Water		Water		Water		Water		Water	
Units:		ug/L		ug/L		'ug/L		ug/L		ug/L	-
Date Sampled :		05/21/2003		05/21/2003		05/21/2003		05/21/2003		05/21/2003	, .
Time Sampled :		10:00		10:30		08:50		09:40	ĺ	11:00	
Dilution Factor :		1.0		1.0		1.0		1.0		1.0	
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flàg	Result	Flag	Result	Flag
ALUMINUM	200	88.4	įΒ	43.1	В	356	В	27.1	В	61.7	В
ANTIMONY	60				ě.		ŀ	_			
*ARSENIC	. 15						ľ	٠.			ľ
BARIUM	200	74.7	` J	71.6	ป	68.0	J	93.3	J	46.3	J
BERYLLIUM	5					0.72	J			0.20	В
*CADMIUM	5			A AND THE STREET	175		į.	1,		ب -	
CALCIUM	5000	17300	, ,	14100	li	11600		25100		9730	
*CHROMIUM	10	1.6	3 B ₹		1	1.7	ЕΒ			0.90	J
COBALT	50	3.7	J	2.7	J	8.5	j	2.3	J	6.5	j
COPPER	25	2.2	: /J [3	1.8	J·ż	9.5	J	,			;
IRON	100	52.2	В	17.1	В	1220		765		1240	l` .
*LEAD	10		1	gilligger gilligger	i i	3.4	В			, , , ,	1
MAGNESIUM	5000	24000		10200		6000		15000		5930	
MANGANESE	15	75.0	133	121	1.75	221		194	·	240	
MERCURY	0.2		UL	ALL BUT CATT	UL		UL	٠	UL		UL
*NICKEL	40	7.6	`.B℃	4.1	В	10.4	В	4.1	В	9.7	В
POTASSIUM	5000	4110	J	1040	J	1020	. J	2790	J	1160	J
SELENIUM	35		7:1. in.	6. 沙	- 1					,	`
SILVER	10	1.4	, J		UL		UL		UL		UL
SODIUM	5000	288000	Yellow 1987	2780	Ĵ.	26800		4790	انز	6450	
THALLIUM	25	, ,,,-"	4-, 1.7		¥,	, , ,, ,		1,00		5.00	Į.
VANADIUM	50	1.4	," , J	545-15-15-15-15-15-15-15-15-15-15-15-15-15		1.5	. J				
ZINC	60	102	В	73.5	В	81.6	В	75.1	В	86.6	В
*CYANIDE			Q.	Markit	Q d)	a	75.1	ا م	00.0	Q
CROL - Contract Required Quantitation		1 2008 CO (March 18)		n I aval Eviete				IADDATIVE S			

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

DATA SUMMARY FORM: INORGANIC

Case #: 31736

SDG: MC01K1 ELKTON FARMS

Site : Lab. :

CHEM

DISSOLVED METALS

Sample Number :	•	MC01L7		MC01L8	٠.	MC01L9					
Sampling Location :		DMMW4		DMMW5		DMMW6					
Field QC	i			DUP (MC01	L5)	FIELD BLAI	NK				
Matrix:		Water		Water		Water				,	
Units:		ug/L		ug/L		ug/L					
Date Sampled :		05/21/2003		05/21/2003		05/21/2003			•		
Time Sampled :		11:15		,09:40		11:45					
Dilution Factor:		1.0		1.0		1.0		,			
ANALYTE	CRQL	Result	Flag	Result	Flag	Result	Flag	Result	Flag	Result	Flag
ALUMINUM	200	45.4	В	32.2	В	207	· K		1 .		
ANTIMONY	60			à a	行程	a. Constant					1
*ARSENIC	15						i i				
BARIUM	200	40.3	J	97.5	J	4.1	B		· .		
BERYLLIUM	5`	0.25	В				·	•			
*CADMIUM	5		374	1.73 H							ĺ
CALCIUM	5000	8490		26500		70.5	В				
*CHROMIUM	10		944 40)			3.0	J		11.		7
COBALT	50	4.8	J	3.1	Ì			l'.			
COPPER	25	. * .		1.7	J		•		1 370		. · .
IRON	100	1580		890		129					
*LEAD.	10		F_{ij}							,	7
MAGNESIUM	5000	7080	<u> </u>	15700		453	J				
MANGANESE	15	234		212		1.1	J				ĺ
MERCURY	0.2	·	UL		ŲL		UL	*		,	
*NICKEL	40	11.5	B	5.0	В	4.4	. J				į.
POTASSIUM	5000	368	J	2830	J		UL		1		
SELENIUM	35		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					** ***	1		ŧ.
SILVER	; 10		ÜL		UL		/UL				
SODIUM	5000	9550		5050		的win in the	,			-	ŀ
THALLIUM	25								1		
VANADIUM	50	1						.,	1		
ZINC	60	90.1	В	80.3	В	183	· j		1		
*CYANIDE	i = 10		Q	Maria d	Q:	1	Q		1		i., ;

CRQL = Contract Required Quantitation Limit

*Action Level Exists

SEE NARRATIVE FOR CODE DEFINITIONS

To calculate sample quantitation limits: (CRQL * Dilution Factor)

Appendix C

Chain-of-Custody Records

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No:

31736

DAS No:

R31583

R

Region: Project Code:	3	Date Shipped:	5/21/2003 FedEx	Chain of Custody I	Record	Sampler Signature:	·
Account Code:	02T03N50102D037ZLA00-	Airbiii:	840878239272	Relinquished By	(Date / Time)	Received By	(Date / TJme)
CERCLIS ID:	MDD985407196	Shipped to:	Chemtech Consulting	1			
Spill ID: Site Name/State:	037Z ELKTON FARM/MD		Group (CHEM) 284 Sheffield Street	2			
Project Leader: Action:	Alex Cox Preliminary Assessment		Mountainside NJ 07092 (908) 789-8900	3	* - * · · · · · · · · · · · · · · · · ·		
Sampling Co:	MDE			4.			

L										
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANALYSIS/ TURNAROUND	TAG No./ PRESERVATIVE/ Bottles	STATION LOCATION		COLLECT E/TIME	ORGANIC SAMPLE No.	QC Type	
MC01K1	Ground Water/ Gifawossen Tefera	ĽĠ	CN (21), ICP/AES (21)	1284 (HNO3), 1289 (NaOH) (2)	GWT1	S: 5/21/2003	9:30	C01K1		
MC01K2	Ground Water/ Brian Dietz	L/G	CN (21), ICP/AES (21)	1292 (HNO3), 1297 (NaOH) (2)	GWT2	S: 5/21/2003	10:00	C01K2		-
MC01K3	Ground Water/ Glfawossen Tefera	L/G	CN (21), ICP/AES (21)	1300 (HNO3), 1305 (NaOH) (2)	GWT3	S: 5/21/2003	10:30	C01K3	<u></u>	•
MC01K4	Ground Water/ Dixon Wood	L/G	CN (21), ICP/AES (21)	1308 (HNO3), 1313 (NaOH) (2)	MVV1	S: 5/21/2003	8:50	C01K4	 ·	٠.
MC01K5	Ground Water/ Dixon Wood	L/G	CN (21), ICP/AES (21)	1316 (HNO3), 1321 (NaOH) (2)	MW2	S: 5/21/2003	9!40	C01K5		
MC01K6	Ground Water/ Dixon Wood	L/G	CN (21), ICP/AES (21)	1324 (HNO3), 1325 (HNO3), 1338 (NaOH), 1339 (NaOH)	MVV3	S: 5/21/2003	11:00	C01K6	MS/MSD	:
MC01K7	Ground Water/ Brian Dietz	L/G	CN (21), ICP/AES (21)	(4) 1344 (HNO3), 1349 (NaOH) (2)	MVV4	S: 5/21/2003	11:15	C01K7		
	Ground Water/ Dixon Wood	L/G	CN (21), ICP/AES (21)	1352 (HNO3), 1357 (NaOH) (2)	M _V V5	S: 5/21/2003	9:40	C01K8	Field Duplicate OF Ma	<i>v-</i> 2
	Ground Water/ Chris Hartman	L/G	CN (21), ICP/AES (21)	1360 (HNO3), 1365 (NaOH) (2)	MW6	S: 5/21/2003	11:45	C01K9	Field Blank	
	Ground Water/ Gifawossen Tefera	L/G	DM (21)	1370 (HNO3) (1)	DMGWT1	S: 5/21/2003	9:30	·	.	

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:
	MC01K6		_
Analysis Key:	Concentration: L = Low, M = Low/Medium, H = High	Type/Designate: Composite = C, Grab = G	Shipment iced?
CN = Cyanide, DM = CL	TAL Dissolved Metals+Hg ICP-AES, ICP/AES = CLP TAL	otal Metals+Hg ICP-AES	

TR Number: 3-592370820-052103-0002
PR provides preliminary results. Requests for preliminary results will increase analytical costs.

REGION COPY

	FPΛ	USEPA Con	ľ
M.F		Tananania	

MC01L9

USEPA Contract Laboratory Program Inorganic Traffic Report & Chain of Custody Record

Case No: 31736

DAS No: R31583

Region: Project Code:	3	3 02T03N50102D037ZLA00 MDD985407196 037Z ELKTON FARM/MD Alex Gox Prelliminary Assessment MDE		Carrier Name: For Airbill: 84 Shipped to: Ci	5/21/2003 FedEx 840878239272 Chemtech Consulling Group (CHFM) 284 Sheffield Street Mountainside NJ 07092		Chain of Custody Record			Sampler Signature:			
Account Code: CERCLIS ID: 8pill ID;	MDD98540						Relinquished By (Date / Time) 1 2 3		Time)	me) Received By (Date / Tir		me)	
Project Leader	e: ELKTON F								4. 500 2.00 2.00 2.00 2.00 2.00 2.00 2.00				
Antion: Sampling Co:	Preliminary			(908) 789 8900									
INORGANIC SAMPLE No.	MATRIX/ SAMPLER	CONC/ TYPE	ANAI YRISI TURNAROUND	TAG 1 PRESERVATI		GEATION			E/TIME		ANIO LE No.	tat. Type	<u>.</u>
MG011.9	Ground Water/	l/a	DM (21)	(1) (1)NO3 (1)		DMOWIZ	· · · · ·	9-7/21/200 C	10,00	 			-
MG01L3	Ground Water/	L/G	DM (21)	1372 (HNO3) (1)	ı	DMGW13		8: 5/21/2003	10:30				1
ngoté4	Letera Ground Water/ Dixon Wood	I./ 9	DM (21)	1373 (HNO3) (1)	-	DMMW1		§: 5/21/2003	8:50				
ACO11.5	Ground Water/ Dixon Wood	l./G	DM (21)	1374 (HNO3) (1)		DMMW2		8: 6/21/2003	9:40				
n itua	Caronind Wales/ Dixon Wood	1./G	DM (21)	्। 376 (أ॥﴿))3), 13 (?)	७ (भाषलंड)	DMMV/3		8: 6/21/2003	14:00			MS/MSD ,	
	Ground Waler/ Bilan Dietz	1/0	~ DM (21)	17 <i>(</i> 7 (18107)(1)		DMMW4		0 0/24/2001	11.15	•			
	Ground Water/	t/g	(DM.(21)	1378 (HNO3) (1)	• • • • • • • • • • • • • • • • • • • •	DMMW5		9-5/21/2003	0.40		•	Hald Duplleate 6F	Deri

Shipment for Case Complete? Y	Sample(s) to be used for laboratory QC:	Additional Sampler Signature(s):	Chain of Custody Seal Number:	
	MC01K8			
Analysis Key: CN = Cyanide, DM = CL	Concentration: L = Low, M = Low/Medium, H = High PIAL Dissolved Metals+Hg ICP-AES, ICP/AES = CLP TAL 1	Type/Designate: Composite = C, Grab = G	8hipment loed?	
	, , , , , , , , , , , , , , , , , , , ,	oral morals in the lot-wes	?	

TR Number: 3-592370820-052103-0002

Ground Water/

Chila Hartman

L/G

DM (21)

1379 (HNO3) (1)

REGION COPY

Field Blank

U.S. EPA Region III Sample Scheduling Request Form

		·		· /		
RAS CASE No: (CT1809 /31736	DAS No:		NSF No:		
Date: 5/14/03	Data Validatio	n Level: M3, IM2		EPA Lab Reply:		
Site Name: Elkto	n Farm	}		QAPP/SAP Info:		
Address: 183 Zei	tler Road		City: Elkton		State: Maryland	
Latitude:	,	Longitude:		Anal +Val Data TAT:	60 Days	
Program: CERC	LA	CERCLIS No: MDD98540	7196	Activity: SI		
Account No: 03T	03N50102D037ZLA00	Operable Unit: 00		Spill ID: 037Z		
Preparer: Chris	Hartman	RPM/PO:Lorie Baker		Site Leader: Alex Cox		
Phone: 410-537-	3453	Phone: 215-814-3355		Phone: 410-537-3493		
FAX: 410-537-34	172	FAX: 215-814-3001		FAX: 410-537-3472		
E-mail: chartma	n@mde.state.md.us	E-mail: baker.lorie@epa.ge	DV	E-mail: acox@mde.state.md.us		
ЕРА СО:		Contract Type:	Prime: MDE	Sub:		
Lab Assignment	Date:	Analytical TAT:	30 Days	Ship Date From: 5/19	/03	
Organic Lab:			· · · · · · · · · · · · · · · · · · ·	Ship Date To: 5/23/03		
Inorganic Lab:			, (4.	Carrier:		
SAMPLES	METHOD		PARAMETER) 2	MATRIX	
9	OLM04.3	TCL			AQ	
1	OLM04.3	voc			AQ	
12	ILM05.2	ICP-AES TAL+CN+Hg	4. ,		AQ	
9	ILM05.2	ICP-AES TAL (DM)			AQ	
				,		
					_	
Notes:			,			

- Quantitation Limits and Quality Control requirements other than those specified in the method or SOW must be included on separate sheet.
 QC filed samples must be included as part of the total number of samples.
 Data validation levels M3 and IM2 require justification.

Special Instructions:			
		•	

Sunny Patel

From:

Sturdavant, Holly [Holly.Sturdavant@dyncorp.com] Tuesday, May 27, 2003 9:24 AM

Sent:

To:

Divya (E-mail); Sunny Patel (E-mail)

Cc:

Betty Ann Jeffery (E-mail); Dan Slizys (E-mail); John Kwedar (E-mail); Khin-Cho Thauno (E-

Subject:

Region 03 | Case 31736 | Lab CHEM | Issue Insufficient/inappropri ate designation of

laboratory QC | FINAL

Sunny,

Following is the resolution from Region 3 regarding the DM lab QC issue for Case 31736. Per the Region, the lab will place both the TM/CN samples and the DM samples in the same SDG. The lab will only perform lab QC on the designated TM/CN sample.

Please let me know if you have any other questions or problems.

Thanks, Holly

Holly Rogers Sturdavant

CSĆ

CLP Coordinator for Regions 3, 7, & 9

703-264-9526

holly.sturdavant@dyncorp.com or holly.rogers@dyncorp.com

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

-Original Message-

From: slizys.dan@epamail.epa.gov [mailto:slizys.dan@epamail.epa.gov]

Sent: Tuesday, May 27, 2003 6:40 AM To: Sturdavant, Holly

Cc: Betty Ann Jeffery (E-mail); John Kwedar (E-mail); Khin-Cho Thaung

(E-mail)

Subject: Re: NEW ISSUE | Case 31736 | Lab CHEM | Issue

Insufficient/inappropriate designation of laboratory QC

Holly.

The lab does not have to perfrom QC for DM fraction. They should retain all samples in one SDG.

From: "Sturdavant, Holly"<Holly.Sturdavant@dyncorp.com>

Betty Jeffery/ESC/R3/USEPA/US@EPA, Dan Slizys/ESC/R3/USEPA/US@EPA. John Kwedar/ESC/R3/USEPA/US@EPA, Khin-Cho

Thaung/ESC/R3/USEPA/US@EPA

Subject: NEW ISSUE | Case 31736 | Lab CHEM | Issue Insufficient/inappropriate designation of laboratory QC

05/23/2003 05:01 PM

The lab is still waiting on a resolution to this issue. Please advise on how the lab should proceed.

Thanks. Holly

000156

Holly Rogers Sturdavant CLP Coordinator for Regions 3, 7, & 9 703-264-9526 holly.sturdavant@dyncorp.com or holly.rogers@dyncorp.com

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to bind CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail for such purpose.

-Original Message-From: Sturdavant, Holly

Sent: Thursday, May 22, 2003 4:48 PM To: Betty Ann Jeffery (E-mail); Dan Slizys (E-mail); John Kwedar (E-mail);

Khin-Cho Thaung (E-mail)

Subject: NEW ISSUE | Case 31736 | Lab CHEM | Issue Insufficient/inappropriate designation of laboratory QC

Following is an email from CHEM regarding samples received for Case 31736. The lab received 9 TM/CN samples and 9 DM samples for this Case. Only one sample was designated on the TR/COC for lab QC (TM/CN sample MC01K6). The lab would like to know if they should perform lab QC on one of the DM samples.

Please advise on how the lab should proceed.

Thanks. Holly

Holly Rogers Sturdavant CSC CLP Coordinator for Regions 3, 7, & 9 703-264-9526

holly.sturdavant@dyncorp.com or holly.rogers@dyncorp.com

This is a PRIVATE message. If you are not the intended recipient, please delete without copying and kindly advise us by e-mail of the mistake in delivery. NOTE: Regardless of content, this e-mail shall not operate to

CSC to any order or other contract unless pursuant to explicit written agreement or government initiative expressly permitting the use of e-mail

for such purpose.

--Original Message-

From: Sunny Patel [mailto:Sunny@Chemtech.net]

Sent: Thursday, May 22, 2003 3:04 PM

To: Sturdavant, Holly Subject: RE: Region 3 | Case # 31736 | CHEM | 68W02068 | Issue about QC

REVISED

Hi Holly,

Lab received 9 samples for TM/CN & 9 samples for Diss Metals. On TR they marked QC sample MC01K6 for TM/CN & they did not marked sample MC01L6 as QC sample in TR.

Thanks, Sunny.

000157

```
-Original Message--
              Sturdavant, Holly [SMTP:Holly.Sturdavant@dyncorp.com] Thursday, May 22, 2003 3:08 PM
> Sent:
> To:
          'Sunny Patel'
               RE: Region 3 | Case # 31736 | CHEM | 68W02068 | Issue
> Subject:
about 
> QC | REVISED
> Sunny,
> What is the total number of samples that the lab received for this
Case?
> Region 3 generally does not require separate lab QC for DM if both the
> metals and dissolved metals can be placed in the same SDG.
> Please let me know.
> Thanks.
> Holly
> Holly Rogers Sturdavant
> CLP Coordinator for Regions 3, 7, & 9
> 703-264-9526
> holly.sturdavant@dyncorp.com or holly.rogers@dyncorp.com
> This is a PRIVATE message. If you are not the intended recipient,
> delete without copying and kindly advise us by e-mail of the mistake
> delivery. NOTE: Regardless of content, this e-mail shall not operate
to
> CSC to any order or other contract unless pursuant to explicit written
> agreement or government initiative expressly permitting the use of
e-mail
> for such purpose.
      Original Message-
> From: Sunny Patel [mailto:Sunny@Chemtech.net]
> Sent: Thursday, May 22, 2003 2:56 PM
> To: Sturdavant, Holly
> Subject: RE: Region 3 | Case # 31736 | CHEM | 68W02068 | Issue about
QC
   REVISED
  Importance: High
> Hi Holly,
 > Lab received 2 bottle for sample MC01L6 for Diss Metals. Can lab use
> samples as a QC samples.
> Please let lab know ASAP.
  Thanks,
  Sunny
       --Original Message-
                Sunny Patel
 > > From:
                Thursday, May 22, 2003 2:38 PM
 > > Sent:
               'holly.sturdavant@dyncorp.com'
 > > To:
                     Region 3 | Case # 31736 | CHEM | 68W02068 |
 > > Subject:
 Issue about QC
```

000158

- > > Importance: High > > Hi Holly, >> On TR they marked Case is complete & they marked only 1 QC samples
- for >> TM/CN. Lab also received Diss Metals samples for this case no QC on
- TR. > > Lab like to know QC is required for Diss Metals samples.
- > > Please let lab know ASAP.
- > > Thanks,
- > > Sunny.

Appendix D

Laboratory Case Narrative

USEPA - CLP

COVER PAGE

Lab Name: CHEMTECH CONSULTING GROUP

Contract: 68-W0-2068

Lab Code: CHEM

Case No.: 31736

NRAS No.:

SDG No.: MC01K1

SOW No.: ILM05.2

		· ·	
EPA SAMPLE NO.		Lab Sample	ID
MC01K1		R2606-01	
MC01K2		R2606-02	
MC01K3		R2606-03	
MC01K4		R2606-04	
MC01K5		R2606-05	
MC01K6	* J	R2606-06	
MC01K6D	•	R2606-07	
MC01K6S		R2606-08	
MC01K7	•	R2606-09	
MC01K8		R2606-10	
MC01K9		R2606-11	•
MC01L1	,	R2606-12	
MC01L2		R2606-13	
MC01L3		R2606-14	
MC01L4		R2606-15	
MC01L5		R2606-16	
MC01L6		R2606-17	
MC01L7		R2606-18	
MC01L8		R2606-19	
MC01L9		R2606-20	
.160.			
	•		.

ICP-AES

Were ICP-AES and ICP-MS interelement

corrections applied?

Were ICP-AES and ICP-MS background corrections applied?

If yes-were raw data generated before application of background corrections? (Yes/No) YES

(Yes/No) YES

(Yes/No) NO

Comments:

The "E" qualifiers on Form I and IX for Potassium indicate chemical or physical interference effects, which were suspected during that element's analyses only.

I certify that this data package is in compliance with the terms and conditions of the contract, both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hardcopy data package and in the computer-readable data submitted on diskette (or via an alternate means of electronic transmission, if approved in advance by USEPA) has been authorized by the Laboratory Manager or the Manager's designee, as verified by the following signature.

Signature: Date: <u>[6]10</u>

Name: MILDRED V. REYES Title: QA/QC DIRECTOR

COVER PAGE

ILM05°. 2

CHEMTECH

SDG NARRATIVE

USEPA
SDG # MC01K1
CASE # 31736
CONTRACT # 68-W0-2068
LAB NAME: CHEMTECH CONSULTING GROUP
LAB CODE: CHEM
CHEMTECH PROJECT #R2606

A. Number of Samples and Date of Receipt

18 Water samples were delivered to the laboratory intact on 05/22/03.

B. Parameters

Test requested for Total and Dissolved Metals and Cyanide.

C. Cooler Temp

Indicator Bottle: Presence/Absence

Cooler Temp: 5°C

D. Detail Documentation (related to Sample Handling Shipping, Analytical Problem, Temp of Cooler etc):

The lab received 9 TM/CN samples and 9 DM samples for this Case. Only one sample was designated on the TR/COC for lab QC (TM/CN sample MC01K6). The lab would like to know if Lab should perform lab QC on one of the DM samples.

For details, please check the attached E-mail Communication page at the end of the Data Package.

E. Corrective Action taken for above:

Following is the resolution from Region 3 regarding the DM lab QC issue for Case 31736. Per the Region, the lab will place both the TM/CN samples and the DM samples in the same SDG. The lab will only perform lab QC on the designated TM/CN sample.

For details Regional Resolutions, please check the attached E-mail Communication page at the end of the Data Package.

F. Analytical Techniques:

All analyses were based on CLP Methodology by method ILM05.2

CHEMTECH

Note (For Aqueous Cyanide analysis): Aqueous Cyanide Samples were tested for the Presence for Sulfide and Oxidizing agents, however, results found no indication of Sulfide and Oxidizing agents. Magnesium Chloride Solution also added.

G. Calculation:

Conversion of results from mg/L to mg/kg (Dry Weight Basis):

Mg/Kg = (Result in mg/L) X 1000 X 100/ % Solid X Fraction of Sample Amount Taken in Prep.

Factor of Sample Amount Taken in Prep:

For Cyanide = 20(Where Initial Sample Wt. Taken is 1.00 g and Final Volume is 50 ml.) If the Initial Sample Wt. Is 1.01 g, then the Factor would be $20 \times 1.01 = 20.2$

G. QA/QC

Calibrations met requirements. Interference check met requirements. Blank analyses did not indicate the presence of contamination. Laboratory Control sample was within control limits. Spike sample did met requirements except for Silver and Aluminum. Most of the elements of Duplicate sample did met requirements except for the Zinc. Serial Dilution did met requirements except for the Potassium.

I certify that the data package is in compliance with the terms and conditions of the contract both technically and for completeness, for other than the conditions detailed above. Release of the data contained in this hard copy data package has been authorized by the Laboratory Director or his designee, as verified by the following signature.

Signature

Name: Parveen Hasan

Date

Title: QA/QC